The model formulated in (called LLE in the following) was introduced more than thirty years ago with the aim of providing a paradigm for pattern formation in nonlinear optical systems. The criterion of simplicity followed in formulating the LLE led to consider a Kerr medium enclosed in a nonlinear bistable optical cavity of high quality driven by a coherent light beam. The possibility of localized solitonic structures was predicted in.

The rather idealized conditions assumed in the LLE met physical realizations in a passive fiber cavity\(^2\) and in broadband Kerr frequency combs in driven microresonators with very high Q\(^4\). It has soon become clear that the LLE is the model for the description of Kerr combs; the history that starts from the LLE and goes to soliton-based Kerr frequency combs is described in\(^5\).

These results have led to worldwide research activity on this topic. Today Kerr frequency comb generation is a mature field and the technology has been applied to numerous areas, including coherent telecommunications, spectroscopy, atomic clocks as well as laser ranging and astrophysical spectroscopic calibration.

A companion paper to, published in 1988\(^6\), extended the LLE concept to the case of a laser instead of a passive system. A very recent paper\(^7\) indicates that a model formulated in\(^6\) is closely linked to quantum cascade lasers.

---


Zoom link: https://zoom.us/j/94125301912?pwd=MIIBXeWpIcVJDennBWUTlFQmNOQTlXZz09