
Geometry: from past to future…

Inaugural lecture for the 2021 Francqui Chair at the ULB
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Introduction to geometry

Euclidean geometry was created by Euclid in 300 BC and written
down in a series of 13 books called “The Elements”.
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Euclidean geometry
▶ Euclid deals with familiar concepts such as points, lines,

lengths and angles and proves that these have the expected
properties.

Theorem (The Elements, Book I, Proposition 32)

a

b

c

a+ b+ c = 180◦

▶ The Elements (300BC) were written in modern mathematical
style with Axioms, Definitions, Theorems and Proofs. The
axioms, from which everything else starts, were regarded as
self-evident truths.
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Euclidean geometry and reality

▶ It would be nice if reality were indeed described by Euclidean
geometry, but things are not that simple. For example the
Earth’s surface is a sphere (Aristotle 330BC) so it is not
described by Euclidean geometry.

a

b

c

a+ b+ c > 180◦

▶ In fact the universe as a whole is described by a 4-dimensional
curved space (Albert Einstein 1915).
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Euclidean geometry and reality
String theory even uses spaces with many more dimensions with a
very complicated geometry.

Two dimensional cross section of a quintic 3-fold
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A non-Euclidean space in art

Circle Limit III (M.C. Escher 1959)
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The hyperbolic plane

The hyperbolic plane is a kind of geometry where a different
version of the infamous 5’th postulate by Euclid holds.
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Euclidean analogue of Circle Limit III

Study of Regular Division of the Plane with Reptiles (M.C. Escher 1939)
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The hyperbolic plane in art

Circle Limit III (M.C. Escher 1959)
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Charts and atlases
Like real world carthographers, mathematicians use the concepts of
“charts” and “atlases” to describe the spaces they use.
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Charts and atlases
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Charts and atlases
An atlas of a space is a collection of overlapping charts which
cover the whole space.
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From charts and atlases to geometry
▶ Depending on the types of charts allowed, and the ways of

gluing them together (“coordinate changes”), many different
types of spaces can be created. These are often called
manifolds.

▶ Real manifolds are described using charts whose coordinates
are expressed in real numbers and the coordinate changes are
given by “smooth functions”.

(Smooth functions are functions which are infinitely differentiable.)

▶ Complex manifolds are described using charts whose
coordinates are expressed in complex numbers and the
coordinate changes are given by “holomorphic functions”.

(Holomorphic functions are functions represented by convergent power series.)

▶ Physics uses the language of symplectic geometry in which for
example a 1-dimensional particle is described by its position
coordinate (q) and momentum coordinate
(p = mass × speed). Coordinate changes should respect the
“symplectic form” dq ∧ dp.
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Complex versus real versus symplectic geometry: example

▶ For λ ∈ C− {0, 1} consider
Eλ := {(x, y) ∈ C2 | y2 = x(x− 1)(x− λ)} ⊂ C2(∼= R4)

(real structure
independent of λ)

▶ The Eλ inherit a complex structure and a symplectic structure
from C2.

▶ The Eλ are different as complex manifolds (for generic values
of λ).

▶ On the other hand the Eλ are all identical as symplectic
manifolds.
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The birth of mirror symmetry
▶ String theorists discovered that the spaces they use,

admit a strange kind of duality.

▶ Like in the example we just saw, these spaces have both a
complex and a symplectic structure.

▶ Remarkably, it seemed that every such space has a “mirror
partner” such that its complex geometry corresponds to the
symplectic geometry of the mirror, and vice versa.

▶ Mirror symmetry was born.
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Mirror symmetry

Philip Candelas, Xenia de la Ossa and Sheldon Katz (1994)
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Applications of mirror symmetry

▶ Originally enumerative applications. E.g. rational curves on
the quintic threefold (P. Candelas, X. C. de la Ossa, P. S.
Green, and L. Parkes, 1991 - Morrison, 1992).

▶ “Homological mirror symmetry” (Maxim Kontsevich, 1994).
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The plan

▶ Introduction (done)
▶ Vector bundles
▶ Examples of vector bundles
▶ Mirror symmetry for vector bundles on the two dimensional

sphere
▶ The Strominger-Yau-Zaslow conjecture
▶ More examples
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Vector spaces

A vector space is a space equipped with addition and scaling.

origin

p⃗

q⃗

p⃗+ q⃗

origin

r⃗

λr⃗

Examples: a line, or a plane (with a marked origin)
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Vector bundles

Informally a vector bundle is a collection of vector spaces
parametrized by a space.

A vector bundle of rank 1
(a line bundle)

A vector bundle of rank 2
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Example of a vector bundle: the “tangent bundle”
A tangent space is a local approximation of a space at a point by a
vector space.

An element of the tangent space is called a tangent vector.

21 / 61



Example of a vector bundle: the “tangent bundle”
The tangent space moves if the point moves.

The disjoint union of all the tangent spaces is called the tangent
bundle. It is an example of a vector bundle.
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Vector bundles

M (base space)

V (total space)
f

x

Vx = f−1(x) (fiber, rankV := dim Vx)

A vector bundle is said to be (globally) trivial if it is of the form

V = Rr ×M
projection−−−−−−→ M

Do non-trivial vector bundles exist? If so, how to recognize them?
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Sections
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Sections

a section
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Sections

a section

the zero section
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Sections

Fact: A vector bundle
of rank r is trivial if and
only if it has r sections
which span each fiber.
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The Möbius strip: a non-trivial line bundle on the circle
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Trying to construct a non-zero section…
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The Möbius strip: a non-trivial line bundle on the circle

Oops…
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The tangent bundle is often non-trivial
▶ The sections of the tangent bundle are called vector fields.
▶ In other words: A vector field is a choice of tangent vector in

every point which varies “smoothly” with the point.
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The hairy ball theorem
▶ The hairy ball theorem states that there is no vector field on a

sphere that is (everywhere) non-zero.
▶ Informally: “You cannot comb the hair on a coconut”.

▶ In other words: the tangent bundle of a sphere is non-trivial.
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Proof of the hairy ball theorem

Choose the “convenient atlas”.
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Proof of the hairy ball theorem (by contradiction)

A non-zero vector field on the sphere may be described by
non-zero vector fields on the northern and southern hemisphere
(disks) which agree on the equator.
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Non-zero vector fields on the northern hemisphere

(an example of a non-zero northern vector field)

▶ The vectors on the boundary twist and turn but they don’t
wind around the origin (cfr the orange curve). This can be
seen by shrinking the boundary to a point.

The orange curve
can never cross the origin because the vector field on the disk
is everywhere non-zero.
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Non-zero vector fields on the northern hemisphere

(finished…)

▶ The vectors on the boundary twist and turn but they don’t
wind around the origin (cfr the orange curve). This can be
seen by shrinking the boundary to a point.

The orange curve
can never cross the origin because the vector field on the disk
is everywhere non-zero.
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Non-zero vector fields on the northern hemisphere

(shrunken boundary)

▶ The vectors on the boundary twist and turn but they don’t
wind around the origin (cfr the orange curve). This can be
seen by shrinking the boundary to a point.

The orange curve
can never cross the origin because the vector field on the disk
is everywhere non-zero.
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Non-zero vector fields on the northern hemisphere

(actual boundary)

▶ The vectors on the boundary twist and turn but they don’t
wind around the origin (cfr the orange curve). This can be
seen by shrinking the boundary to a point. The orange curve
can never cross the origin because the vector field on the disk
is everywhere non-zero.

31 / 61



Matching the northern and the southern hemisphere
(another disk)

Northern hemisphere

▶ The tangent vectors on the boundary of the southern
hemisphere wind around the origin (the dark orange curve)
because they incorporate the rotation of the circle.

▶ Hence they cannot be obtained from a non-zero vector field
on the southern hemisphere. The hairy ball theorem is proved.
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Other spaces
▶ Observation: the 1-dimensional sphere (circle) has a non-zero

vector field.

▶ Facts: a sphere admits a non-zero vector field if and only if it
has odd dimension.

▶ The only spheres with trivial tangent bundle are those of
dimension 1, 3 and 7. This is intimately connected with the
existence of the quaternions and the octonions.
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Example: the torus

▶ A torus is the same as circle × circle.
▶ The tangent bundle on the circle is trivial, hence so is the

tangent bundle on the torus.
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Surfaces with more holes
▶ (Compact, orientable) surfaces are characterized by their

number of holes. This is called “the genus” (below an
example of a genus 2 surface).

▶ Surfaces of genus ̸= 1 do not admit non-zero vector fields.
Hence their tangent bundles are non-trivial.
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The direct sum of vector spaces and vector bundles

▶ Vector spaces have a natural “direct” sum operation.

V ⊕W := V ×W = {(v, w) | v ∈ V,w ∈ W}.

One has
dim(V ⊕W ) = dimV + dimW.

▶ For vector bundles V, W there is a similar direct sum V ⊕W,
defined fiberwise via

(V ⊕W)x = Vx ⊕Wx.
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Vector bundles on the circle
▶ We know of two line bundles on the circle:

bla
O (the trivial bundle R×S1)

bla
M (the Möbius strip)

▶ Fact: Every vector bundle of rank k on the circle is of the
form

O ⊕ · · · ⊕ O︸ ︷︷ ︸
k

or O ⊕ · · · ⊕ O︸ ︷︷ ︸
k−1

⊕M.

▶ Fact: There is an “interesting relation”
M⊕M ∼= O ⊕O.
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Observation
The Möbius strip M can be embedded in the trivial bundle
S1 × (R⊕ R) = O ⊕O of rank 2.
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Visualizing the relation M⊕M ∼= O ⊕O.
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Vector bundles on the two dimensional sphere
▶ Understanding vector bundles on higher dimensional spheres is

fun. See Allen Hatcher, “Vector bundles and K-theory”,
Section 1.2.

▶ Example: The list of indecomposable vector bundles on S2

looks as follows

O︸︷︷︸
trivial line bundle

,

rank 2︷ ︸︸ ︷
E(1)︸︷︷︸

analogue of
Möbius bundle

, E(2)︸︷︷︸
tangent bundle

, E(3), . . .

▶ In rank k ≥ 3 things collapse drastically and we only have

O ⊕ · · · ⊕ O︸ ︷︷ ︸
k

and O ⊕ · · · ⊕ O︸ ︷︷ ︸
k−2

⊕E(1)
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Holomorphic vector bundles
▶ Stereographic projection identifies S2 with

R2 ∪ {∞} ∼= C ∪ {∞} ∼= P1(C).

▶ In this way S2 becomes a complex manifold.
Reminder: A complex manifold has charts with coordinates given by complex
numbers and coordinate changes consisting of holomorphic functions.

41 / 61



Holomorphic vector bundles

M (base space)

V (total space)
f

x

Vx = f−1(x) (fiber, rankV := dim Vx)

▶ If M is a complex manifold then it is natural to require that V
is a complex manifold as well, and that f is a morphism of
complex manifolds. Then we call V a holomorphic vector
bundle.

▶ Example: the tangent bundle on a complex manifold (like S2)
is holomorphic.
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Holomorphic vector bundles

▶ The holomorphic line bundles on S2 are indexed by Z.
. . . ,O(−2),O(−1),O,O(1),O(2),O(3), ...

▶ They are related to the real rank two bundles via
O(n)R ∼= E(|n|) (for |n| ≥ 1)

▶ Every holomorphic vector bundle on the 2-sphere is a direct
sum of line bundles in a unique way (no relations).
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Morphisms between vector bundles
▶ A morphism ϕ : V → W between vector bundles on M is a

commutative diagram
V

  A
AA

AA
AA

ϕ // W

}}||
||
||
||

M
whose fibers are linear maps.

▶ The space of morphisms V → W is defined as
HomM (V,W) = {vector bundle morphisms ϕ : V → W}

This is itself a vector space!
▶ On the complex manifold S2 we have

dimHomS2(O(m),O(n)) =

{
n−m+ 1 if n ≥ m

0 otherwise
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Mirror symmetry for the sphere

▶ It is known that the symplectic mirror partner of a 2-sphere is
a cylinder with markings on the boundary called stops.

▶ Homological mirror symmetry tells us that the line bundle
O(n) on S2 corresponds to a curve that goes n times around
the cylinder.
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Holomorphic line bundles on S2 as curves

O(1)

O(−1)
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Holomorphic line bundles on S2 as curves

O(5)

O(−5)
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Holomorphic line bundles on S2 as curves

O(10)

O(−10)
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Wrapping
▶ If Cm is the curve corresponding to O(m) then very roughly

speaking Hom(O(m),O(n)) has a basis indexed by

wrapping(Cm) ∩ Cn

where the wrapping operation is described by the following
animation.
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Wrapping
▶ If Cm is the curve corresponding to O(m) then very roughly

speaking Hom(O(m),O(n)) has a basis indexed by

wrapping(Cm) ∩ Cn

where the wrapping operation is described by the following
animation.
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Example 1: dimHom(O(2),O(3)) = 2
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Example 1: dimHom(O(2),O(3)) = 2

Finished
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Example 2: dimHom(O(−1),O(2)) = 4
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Example 3: dimHom(O(3),O(2)) = 0
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Example 3: dimHom(O(3),O(2)) = 0
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Example 4: dimHom(O(3),O(1)) = 0

▶ There is no mistake. Careful inspection shows that the
intersection point looks different from the ones we
encountered before.

▶ It represents an element of a “higher Hom space” denoted by
Ext1.

▶ It turns out that in our case dimExt1(O(3),O(1)) = 1
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Other curves
▶ There are other interesting non-contractible paths on the

cylinder.

▶ These correspond to so-called “coherent sheaves” living on
isolated points of S2. Coherent sheaves are generalizations of
vector bundles. Roughly speaking these have fibers of varying
dimension (but one needs a better language to talk about
them).
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The SYZ principle

▶ A heuristic principle to recognize mirror pairs is given by
Strominger, Yau, and Zaslow (1996) in the famous paper
“Mirror symmetry is T -duality”.

▶ Very roughly: if X (complex) and X̂ (symplectic) are mirrors
then there should be maps

X

f ��?
??

??
??

? X̂

f̂����
��
��
��

B

to a common base space B such that over a large subset of
B, the fibers of f and f̂ are “dual” tori (i.e. spaces of the
form S1 × · · · × S1).

▶ Line bundles on X correspond to (Lagrangian) sections of f̂ .
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Example: the 2-sphere

B

f

The 2-sphere

B

f̂

The SYZ mirror
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The 2-sphere
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Example: the 2-sphere

B

f

The 2-sphere

B

f̂

The SYZ mirror

B

f̂

(section for O(0))
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Other examples: the plane

▶ The mirror of the plane R2 ∼= C ∼= S2 − {point} is a cylinder
with one stop on the boundary.

▶ SYZ view

The plane The mirror
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Comparison with the sphere: “stop removal”

The sphere (S2) The mirror (2 stops)

The plane (S2 − {point}) The mirror (1 stop)
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Removing the last stop

The plane (S2 − {point}) The mirror (1 stop)

The cylinder (S2 − {2 points}) The mirror (0 stops)
The mirror of a cylinder is a cylinder…
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Other examples: the torus
For λ ∈ C− {0, 1} we obtain a complex torus via

Ēλ = {(X,Y, Z) ∈ P2(C) | Y 2Z = X(X − Z)(X − λZ)}

Just like a cylinder, the mirror of a torus is a torus

A torus The mirror
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Other examples: the pinched torus

For λ ∈ {0, 1} the torus Ēλ becomes pinched.

The mirror of a pinched torus is a punctured torus…

A pinched torus The mirror
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Putting a stop on the puncture
▶ Question: what happens on the complex side if we put a stop

on a punctured torus on the symplectic side?

?

▶ By the inverse of stop removal we would have to make the
complex side bigger. But the complex side is already
“compact”.

▶ Answer: we get a noncommutative space on the complex side
(Lekili-Polishchuk)…

▶ A new kind of geometry: noncommutative geometry…
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Thank you

Some references: Abouzaid, Auroux, Batyrev, Bocklandt, Burban,
Drozd, Dyckerhoff, Ganatra, Haiden, Kapranov, Katzarkov,
Kontsevich, Lekili, Pardon, Polishchuk, Seidel, Shende, Zaslow, …
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